Concord-Carlisle Regional High School

omrarchitects

Agenda

Introduction

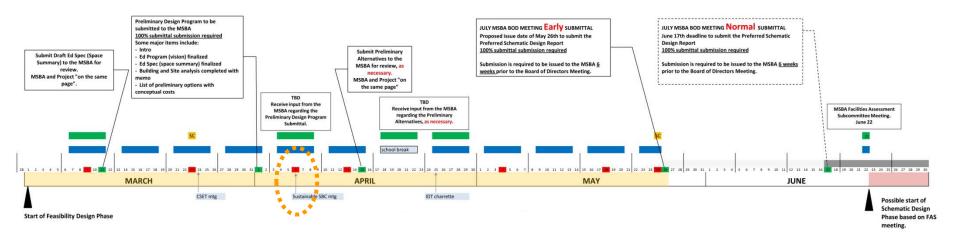
Project Update

Sustainability

Q & A

Consultant Introduction

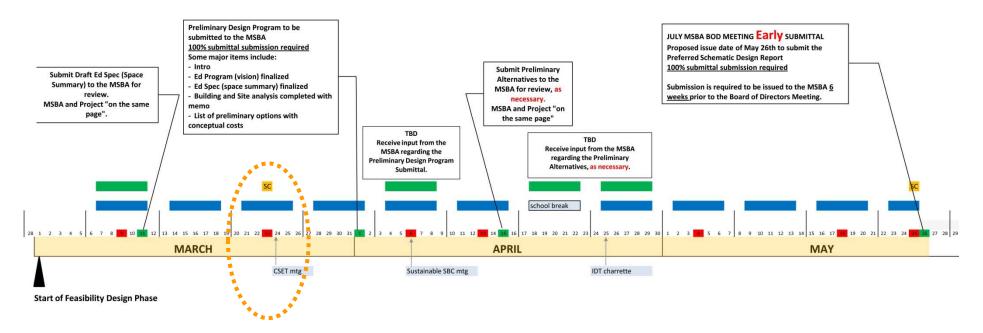
- Bill Brown Brown/Sardina (Landscape)
- Steve Ventresca Nitsch Engineering (Civil)
- Andrea Ranger KEMA (Sustainable Design)
- Dom Puniello GGG Engineering (Mechanical)
- Carlos DeSousa GGD Engineering (Electrical)
- Chris Garcia GGD Engineering (Plumbing/FP)

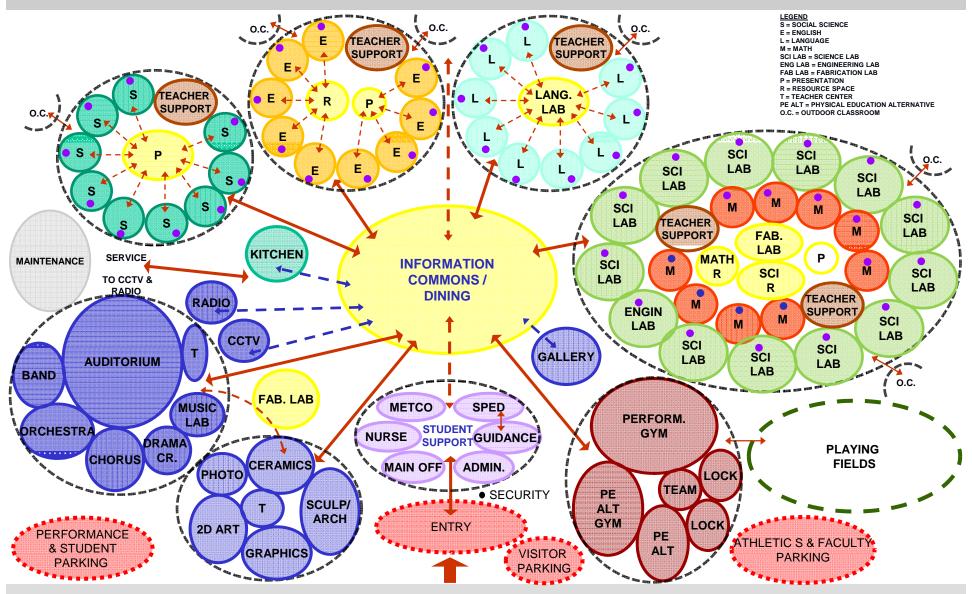

CCHS Feasibility Study Work Plan

Groundwork	 Prepare contract Obtain and review all available/ pertinent documents Prepare schedule and work plan 	 Review existing conditions information Attend Site Based Committee Meeting Conduct User Group meetings and Prepare Space Summary
Meeting # 1	Goals, Values and Space Summary	
3/09/11	Objectives Review schedule and process Review goals, values Review proposed space summary	Follow-up Site walk thru with Engineers and Facilities Manager Submit draft space summary to MSBA for initial review Meet with MSBA for kickoff meeting Prepare Preliminary Alternative concepts
Meeting # 2	Vision, Space Summary and Preliminary Al	ternatives Concepts
3/23/11	Objectives Review Educational Vision, goals and values Review Preliminary Alternative Concepts Approve Initial Space Summary and PDP	Follow-up Complete Preliminary Design Program Submittal for MSBA Meet with MSBA Develop Preliminary Alternatives
Meeting # 3	Sustainability Goals	
4/06/11	Objectives o Discuss sustainability goals and net zero options with team	Follow-up o Develop Preliminary Evaluation of Proposed Alternatives
Meeting # 4	Preliminary Evaluation of Proposed Alterna	atives
4/13/11	Objectives o Review Preliminary Evaluation of Proposed Alternatives	Follow-up Submit Preliminary Alternatives to MSBA for initial review Meet with MSBA Develop Final Evaluation of Selected Alternatives
Meeting # 5	Finalize Preliminary Alternatives	
5/04/11	Objectives o Review and Approve Preliminary Alternative(s)	Follow-up o Prepare Final Evaluation of Alternatives
Meeting # 6	Final Evaluation of Alternatives	
5/18/11	Objectives Review Final Evaluation of Alternatives Confirm Preferred Solution	Follow-up o Prepare Preferred Schematic Report
Meeting # 7	Preferred Schematic Report	
5/25/11	Objectives o Review and Approve Preferred Schematic Report	Follow-up Submit Preferred Schematic Report to MSBA MSBA Facilities Assessment Subcommittee and BOD Vote

Feasibility Study Schedule

Concord-Carlisle High School Feasibility Study Phase Schedule


updated 3.25.11


Feasibility Study Schedule

Concord-Carlisle High School Feasibility Study Phase Schedule

updated 3.25.11

Space Adjacency Diagram

Elements of Sustainability

Site

- Building Orientation
- Overall Disturbance

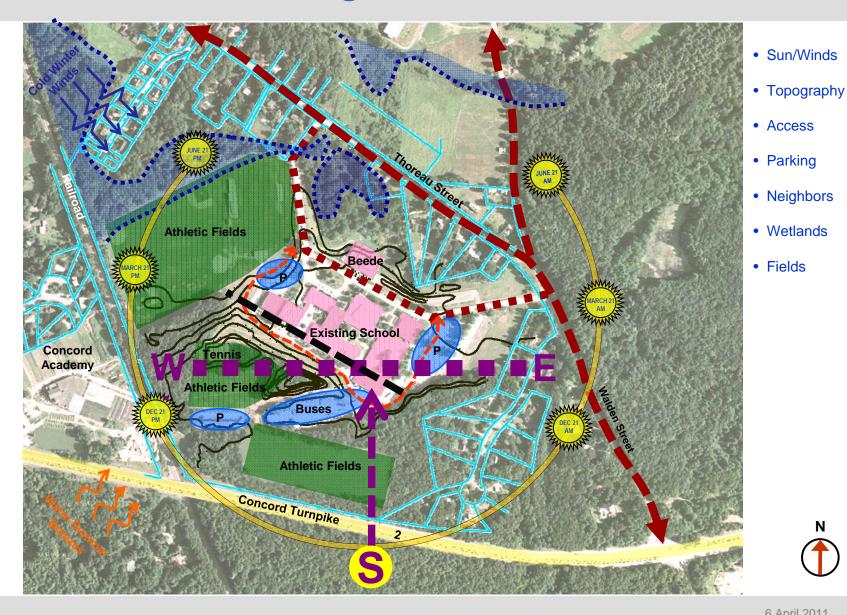
Water

- Conservation
- Stormwater Management

Energy

- Building Use
- Site/Source

Materials


Embodied Energy

IEQ

- Daylighting
- Ventilation

Operations

Building Orientation

Site, Civil and Landscape

Environmental Garden

• use a part of the Environmental Science curriculum

Green Roofs

- · Reduces heat island effect
 - Extensive or Intensive

Site, Civil and Landscape

Athletic Fields and Irrigation

- Fields are allowed to be irrigated under CHPS and LEED
- Investigate using cisterns or wells as a water source
- · Irrigation moisture sensors are required
- Soil organic content
- Grass types
- Synthetic turf can only qualify for points under recycled materials but not water use
- Irrigation commissioning

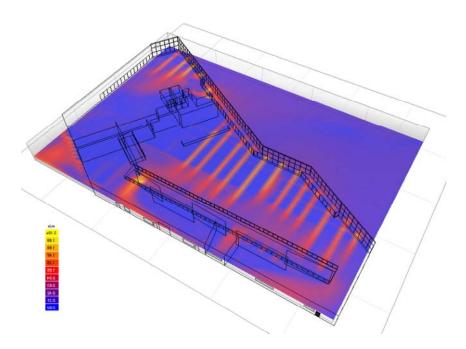
Bike Lanes and Sidewalks

- LEED requires bike lane, racks and showers
- CHPS requires bike lanes, sidewalks at least 1/4 mile from the school entrance, racks

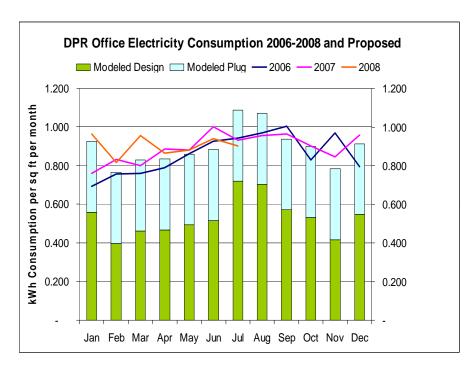
Pavement and Drainage

Bio-Retention (Rain Garden)

Cisterns for Water Harvesting


- Who is KEMA? We are an energy consulting firm located in Burlington, MA and in CA.
 - Completed net zero office, DPR
 Construction in San Diego
 - Currently monitoring and verifying net zero building performance
- KEMA Role Guide conceptual design of CCHS during feasibility and schematic phases

- We will provide modeling of preferred building options to determine:
 - Optimal new addition or construction orientations
 - Insolation (solar load and access)
 - Are heating/cooling loads externally or internally driven?



- Steps to Reach Net Zero REDUCE, REDUCE, REDUCE!
 - Reduce building loads
 - Plan infrastructure of future equipment
 - Develop a capital plan for implementation of NZE

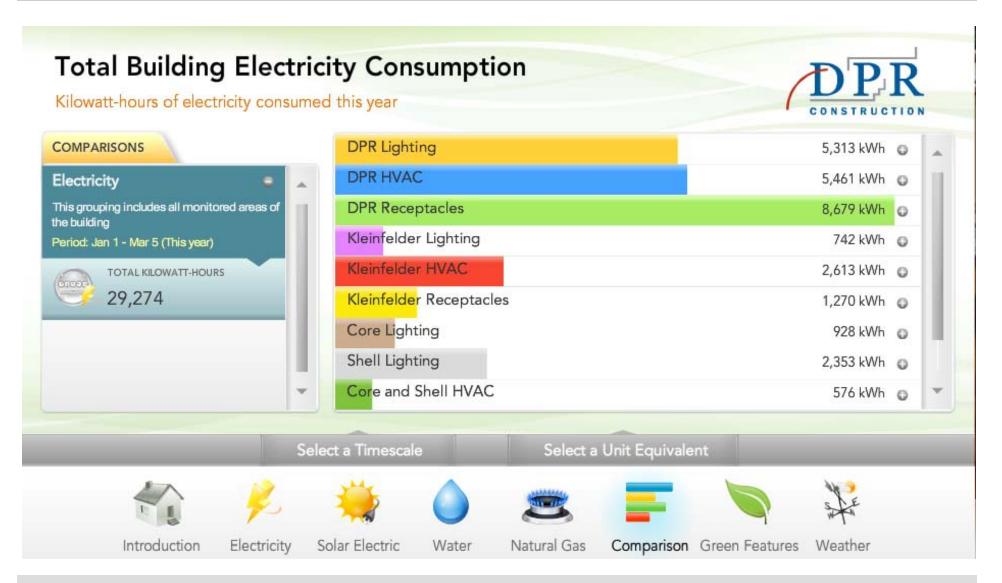
- Use life cycle cost analysis (LCCA) to guide decisions
 - Look long term: Life cycle of 30 years and 50 years
 - Tolerance of first costs versus total cost of ownership
- Utilize Solar Renewable Energy Certificates (SREC's) <u>OR</u> Power Purchase Agreement (PPA)
 - SREC's provide revenue stream once PV installation is complete.
 Concord-Carlisle School District is the owner.
 - Apply through MassCEC and Department of Energy Resources
 - PPA's third party ownership; cost of power is guaranteed for minimum time period (e.g 20 years)
 - Work with Concord Municipal Light & Power on interconnection to grid

- Work as early as possible with Concord Municipal & Light & Power as well as National Grid.
 - National Grid has access to thermal related EE incentives
 - CMLP does not have access to energy efficiency incentives

- Developed an obsolete 1970's tilt up building to be a showcase for sustainable construction
- 10 year whole building initiatives payback
- Maximize daylight goal is 100%
- Establish an energy budget based on existing DPR building not code
- The building is to be designed to NZE

Total Energy Co	sts							
Target % reduction %		Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7
Model: Design	\$	53,050	\$ 56,763	\$ 60,737	\$ 64,988	\$ 69,538	\$ 74,405	\$ 79,613
10.0%	\$	47,745	\$ 51,087	\$ 54,663	\$ 58,489	\$ 62,584	\$ 66,965	\$ 71,652
20.0%	\$	42,440	\$ 45,411	\$ 48,589	\$ 51,991	\$ 55,630	\$ 59,524	\$ 63,691
30.0%	\$	37,135	\$ 39,734	\$ 42,516	\$ 45,492	\$ 48,676	\$ 52,084	\$ 55,729
40.0%	\$	31,830	\$ 34,058	\$ 36,442	\$ 38,993	\$ 41,723	\$ 44,643	\$ 47,768
50.0%	\$	26,525	\$ 28,382	\$ 30,368	\$ 32,494	\$ 34,769	\$ 37,203	\$ 39,807
Cumulative	\$	(26,525)	\$ (54,907)	\$ (85,275)	\$ (117,769)	\$ (152.538)	\$ (189.740)	\$ (229.547)

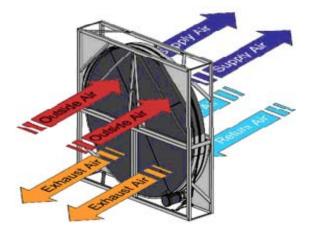
- Retained existing envelope = construction savings
- Retained existing glazing = construction savings
- Designed building modifications within structural limits = construction savings
- Reduced A/C capacity = construction savings
- Passive ventilation system = construction cost
- 100% daylighting = construction cost
- PV array = construction cost


Cost of Strategies

- + Construction Costs
 - + Energy Savings
- = 10 year payback (is 7.5 yrs)

http://www.buildingdashboard.com/clients/dpr/sandiego/

Mechanical Energy Efficiency Measures

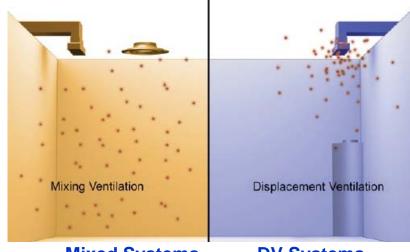

Geothermal Designs for HVAC – Closed Loop, Open Loop (Standing Column), Central Heat Pump Chiller Plant.

Displacement Ventilation

High-Efficiency Gas -Fired Condensing Boilers

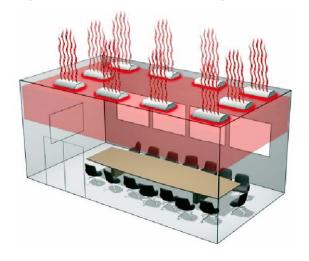
Energy Recovery Wheels

High-Efficiency Chiller


Displacement Ventilation Systems

Benefits:

- Low Noise Levels
- High Level IAQ
- Low First Cost
- High Level of Comfort


Recent Projects:

- Bourne Elementary School
- Lincoln Elementary School
- Boston Renaissance Charter School
- Wellington Elementary School
- Wayland High School
- Carlisle Public School
- Foxboro Charter School
- Tahanto Regional Middle & High School
- Sutton Middle & High School
- Longmeadow High School

Mixed Systems $E_c = 0.8$

DV Systems E_c=1.2 - 1.4

High Efficiency Indirect/Direct Pendant Lighting

Daylight Harvesting & Occupancy Sensor

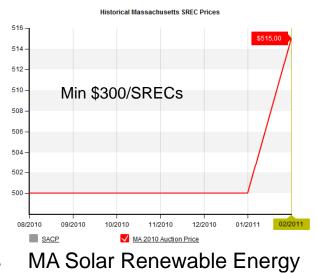
• Dual Technology Occupancy Sensor

• Dual Zone Dimming Photocell Sensor

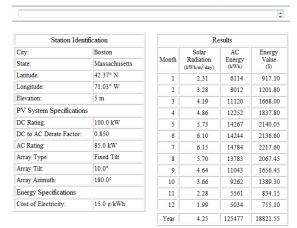
Building Management System For Time of Day Schedule

LED Site Lighting Designed To Meet Electrical Energy

Conservation Measures but not Exceed IES Guidelines



Renewable Energy



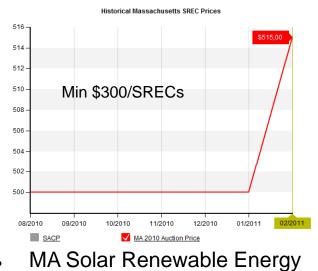
100kw Photovoltaic System w/ Data Acquisition System

 Supplier Must Sell 15% from Renewable

- (1)SRECs Equal to 1MWh
- System generate 125MWh per yr
- Possible Payback
 Approximate 11 yrs
- Require Roof Space 10,000 sq/ft

PV Watts Calculation

6 April 2011


Certificates(SRECs) Auction History

Netzero Renewable Energy

1000kw Photovoltaic System w/ Data Acquisition System

from Renewable

- (1)SRECs Equal to 1MWh
- System generate 1254MWh per yr
- Possible Payback Approximate 11 yrs
- Require Roof Space 100,000 sq/ft

Supplier Must Sell 15%

Station Ident	ification		Re	sults	
City:	Boston		Solar	AC	Energy
State:	Massachusetts	Month	Radiation (kWh/m²/day)	Energy (kWh)	Value (\$)
Latitude:	42.37° N	1	2.31	61142	9171.30
Longitude:	71.03° W	2	3.28	80123	12018.45
Elevation:	5 m	3	4.19	111200	16680.00
PV System Specifications	;	4	4.86	122517	18377.55
DC Rating:	1000.0 kW	5	5.73	142667	21400.05
DC to AC Derate Factor:	0.850	6	6.10	142442	21366.30
AC Rating:	850.0 kW	7	6.15	147838	22175.70
Array Type:	Fixed Tilt	8	5.70	137829	20674.35
Array Tilt:	10.0°	9	4.64	110429	16564.35
Array Azimuth:	180.0°	10	3.66	92623	13893.45
Energy Specifications		11	2.28	55612	8341.80
Cost of Electricity:	15.0 ¢/kWh	12	1.99	50345	7551.75
		Year	4.25	1254766	188214.90

PV Watts Calculation

Certificates(SRECs) Auction History

Plumbing Energy Efficiency Measures

 Rain water harvesting from roof areas with water stored in underground storage cistern used for both flushing water closets & urinals and for irrigation.

High-Efficiency Gas-Fired Water Heaters

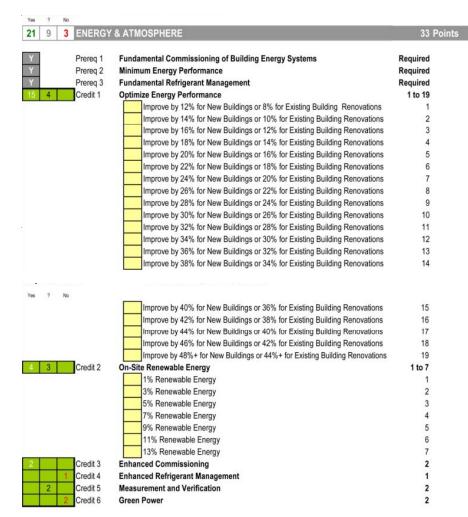
High Efficiency Plumbing
 Fixtures & Waterless Urinals.

Next Steps

SBC Meeting #4, April 13, 2011

Review Proposed Alternatives

omrarchitects


LEED for Schools

LEED 2009 for Schools New Construction and Major Renovations Project Scorecard

Project Name: Concord Carlisle High School
Project Address: 500 Walden street, Concord, MA 01742

13	9	2	SUSTAIN	IABLE SITES	24 Points
Υ			Prereg 1	Construction Activity Pollution Prevention	Required
1			Prereg 2	Environmental Site Assessment	Required
			Credit 1	Site Selection	1
	4		Credit 2	Development Density and Community Connectivity	4
1		1	Credit 3	Brownfield Redevelopment	1
			Credit 4.1	Alternative Transportation - Public Transportation Access	4
T			Credit 4.2	Alternative Transportation - Bicycle Storage and Changing Rooms	1
1			Credit 4.3	Alternative Transportation - Low-Emitting and Fuel-Efficient Vehicles	2
1	2		Credit 4.4	Alternative Transportation - Parking Capacity	2
1	1		Credit 5.1	Site Development - Protect or Restore Habitat	1
1			Credit 5.2	Site Development - Maximize Open Space	1
1	1		Credit 6.1	Stormwater Design - Quantity Control	1
1			Credit 6.2	Stormwater Design - Quality Control	1
1		1	Credit 7.1	Heat Island Effect - Nonroof	1
1			Credit 7.2	Heat Island Effect - Roof	1
1			Credit 8	Light Pollution Reduction	1
1	1		Credit 9	Site Master Plan	1
			Credit 10	Joint Use of Facilities	1
	7	No	WATER	EFFICIENCY	11 Points
	,		WAILK	LI I TOLLINO I	TTTOING
			Prereq 1	Water Use Reduction	Required
	2		Credit 1	Water Efficient Landscaping	2 to 4
			•	50% Reduction	2
				No Potable Water Use or Irrigation	4
	2		Credit 2	Innovative Wastewater Technologies	2
1	2		Credit 3	Water Use Reduction	2 to 4
			•	30% Reduction	2
				35% Reduction	3
				40% Reduction	4
1			1		

Credit 4

Process Water Use Reduction

LEED for Schools

Yes ?	No						
5 3	5 MATERIA	LS & RESOURCES	13 Points	1	Credit 5	Indoor Chemical and Pollutant Source Control	1
	BALLED BALLED LAND			1	Credit 6.1	Controllability of Systems - Lighting	1
Y	Prereg 1	Storage and Collection of Recyclables	Required	1	Credit 6.2	Controllability of Systems - Thermal Comfort	1
	2 Credit 1.1	Building Reuse - Maintain Existing Walls, Floors and Roof	1 to 2	1 1	Credit 7.1	Thermal Comfort - Design	1
	Orodit 1.1	Reuse 75%	1	1	Credit 7.2	Thermal Comfort - Verification	1
		Reuse 95%	2	1 2	Credit 8.1	Daylight and Views	1 to 3
	1 Credit 1.2	Building Reuse - Maintain Interior Non-Structural Elements	1		_	75% of classrooms	1
2	Credit 2	Construction Waste Management	1 to 2			90% of classrooms	2
		50% Recycled or Salvaged	1			75% of other spaces	2 to 3
		75% Recycled or Salvaged	2	1	Credit 8.2	Daylight and Views - Views	1
	2 Credit 3	Materials Reuse	1 to 2	1	Credit 9	Enhanced Acoustical Performance	1
	o o o o o o	5% Reuse	1	1	Credit 10	Mold Prevention	1
		10% Reuse	2	Yes ?	No		
1 1	Credit 4	Recycled Content	1 to 2	4 2	INNOVAT	TION IN DESIGN	6 Points
		10% of Content	1				
		20% of Content	2				
1 1	Credit 5	Regional Materials	1 to 2				
		10% of Materials	1	Yes ?	No		
		20% of Materials	2	2 2	Credit 1	Innovation in Design	1 to 4
1	Credit 6	Rapidly Renewable Materials	1			Innovation or Exemplary Performance	1
1	Credit 7	Certified Wood	1			Innovation or Exemplary Performance	1
Yes 7	No					Innovation or Exemplary Performance	1
14 5	1 INDOOR	ENVIROMENTAL QUALITY	19 Points			Innovation	1
.,,	·		10 1 011110	1	Credit 2	LEED® Accredited Professional	1
Y	Prereg 1	Minimum Indoor Air Quality Performance	Required	1	Credit 3	School as a Teaching Tool	1
Y	Prereq 2	Environmental Tobacco Smoke (ETS) Control	Required	Yes 7	No		
Y	Prereq 3	Minimum Acoustical Performance	Required	1 2	1 REGIONA	AL PRIORITY	4 Points
1	Credit 1	Outdoor Air Delivery Monitoring	1				
	1 Credit 2	Increased Ventilation	1	1 2	1 Credit 1	Regional Priority	1 to 4
1	Credit 3.1	Construction Indoor Air Quality Management Plan - During Construction	1		_	Regionally Defined Credit Achieved SSc2, SSc3, MRc1.1 - NA	1
1	Credit 3.2	Construction Indoor Air Quality Management Plan - Before Occupancy	1			Regionally Defined Credit Achieved SSc6.2 - YES	1
4	Credit 4	Low-Emitting Materials	Up to 4			Regionally Defined Credit Achieved WEc2 - Depends on client decision (\$)	1
		4.1 - Adhesives & Sealants	1			Regionally Defined Credit Achieved EAc2 - Depends on client decision (\$)	1
		4.2 - Paints & Coatings	1	Yes ?	No		
		4.3 - Flooring Systems	1	62 37	12 PROJECT	T TOTALS (Certification Estimates)	110 Points
		4.4 - Composite Wood & Agrifiber Products	1			40-49 points Silver: 50-59 points Gold: 60-79 points Platinum: 80+ points	
		4.5 - Furniture & Furnishings	1				
		4.6 - Ceiling & Wall Systems	1				

MA CHPS 2009

Collaborative for High Performance Schools (CHPS) PROJECT APPLICATION: Concord Carlisle High School Based on the 2009 Edition III. CHPS Scorecard When your project is ready to be screened and reviewed, notify CHPS by faxing or emailing the registration form signed. On this scorecard, you should have placed a check mark in the "ready for review" column for the deisgn review, and when it is time for the construction review for each prerequisite and credit claimed signifying that its template has been completed and that all supporting attachments and documents have been uploaded to your project CHPS website. Check with CHPS for alternative, equivalent submittals that may be acceptable. Key: T-Template Required, A-Attachment Required, CD-Construction Document Required, CA - Construction Audit Requirement CONSTRUCTION REVIEW REQUIREMENTS NUMBER TEAM MEMBER RESPONSIBLE POSSIBLE POINTS POINTS NTEGRATION AND INNOVATION (2 prerequisites; 11 possible points) **Integrated Design** Req T - CD **Educational Display** Req REQ Α **Demonstration Areas** T - CD - A II.C2 1-4 2 T A -- A Innovation II.C3 Life Cycle Cost Analysis 3 3 T A -II.C4 School Garden 1 T A CD T CA II.C5 School Master Plan T A -INDOOR ENVIRONMENTAL QUALITY (4 prerequisites; 26 possible points) HVAC Design - ASHRAE 62.1 Req REQ T A CD EQ.P2 T - CD Construction IAQ Management Req REQ EQ.P3 Pollutant and Chemical Source Control Req REQ T A CD Т CA EQ.P4 Moisture Management Req REQ T - CD TA EQ.P5 Minimum Filtration Req REQ T - CD T CA Thermal Comfort - ASHRAE 55 EQ.P6 Req REQ T A CD View Windows, 70% Req REQ T - CD Т CA EQ.P8 Eliminate Glare Req T REQ T A CD EQ.P9 Minimum Acoustical Performance REQ T A CD Req Minimum Low Emitting Materials Req REQ T A CD TA View Windows, 80 - 90% 1-2 1 EQ.C2 Daylighting in Classrooms 1-6 3 T - CD T CA EQ.C3 Advanced Low-Emitting Materials 1-4 2 T - CD T CA

MA CHPS 2009

J.	EQ.C4	Ducted Returns	1	1		T		CD	I		- 1		- 1
	EQ.C5	Enhanced Filtration	1			Ť	·	CD	1	_	-		CA
_	EQ.C6	Post-Construction IAQ	1	1		Ť	Ā	CD	T	_	-		-
DESIGN	EQ.C7	Enhanced Acoustical Performance	1-4	3		Ť	1	CD	i i	_	-		CA
S	EQ.C8	Controllability of Systems	1-2	2		Ť	Ė	CD	T	_	-		CA
ā		Duct Access & Cleaning	1	1		Ť	÷	CD	T	_	-		CA
		Electric Lighting	1	1		Ť	A	CD	i i	_	: 1		CA
ENE		rerequisites; 36 possible points; minimum 2 point						CD		_	- 1		CA
LINE	EE.P1	Minimum Energy Performance				1 +		CD			_		
	EE.P1	Commissioning	Req	REQ		T	A	CD	T	_	- A		
DESIGN	EE.P2	Facility Staff & Occupant Training	Req	REQ			_	-	1	_	<u> </u>		•
Si			Req	REQ	To achieve net zero, need 40% more efficient than	Т	Α	-	-	_	-		-
2		Superior Energy Performance (Performance Approach)	1-15	12	To acmove net zero, need 40% more emicient than	- :	-	-		_	-		-
	,	Superior Energy Performance (Prescriptive Approach)	2-4	-		T	-	CD	I	_	-		
z	EE.C2	Minimize Air Conditioning	1-3	3		Т		CD	T	_	-	111	-
ESIGN	EE.C3	Renewable Energy	1-12	5		T	Α	CD	T	_	-		CA
S	EE.C4	Plug Load Reduction & ENERGY STAR Equipment	1	1		Т	Α	CD	T	_	-		CA
₫		Energy Management System and Sub Metering	1-3	3		T	Α	CD	T	_	Α		-
	EE.C6	Flex Energy	1-2	1		T	-	CD	-		-		-
WAT		erequisite; 16 possible points)											
	WE.P1	Irrigation System Performance on Recreational Fields	Req	REQ		T	•	CD	T		-		CA
Z.	WE.P2	Indoor Water Use Reduction, 20%	Req	REQ		Т	-	CD	T	Т	- [CA
DESIGN	WE.C1	Indoor Water Use Reduction, 30-40%	1-3	1		-	-	-	-	9	-		-
씸	WE.C2	Reduce Potable Water Use for Sewage Conveyance	4	-	Will project pursue rainwater cachement?	T	-	CD	T	•			CA
	WE.C3	No Potable Water Use for Non-Recreational	3	3		T	-	CD	T	Т	- 1		CA
z		Landscaping Areas	_	J			_			_	-		
5	WE.C4	Reduce Potable Water Use for Recreational Landscaping Areas	2	-		т	-	CD	T		-		CA
DESIGN	WE.C5	Irrigation System Commissioning	1			Т	A	CD	T	٠,	A		CA
		Water Management System	1-3	3		Ť	A	CD	T	_	-		CA
SITE	- C - C - C - C - C - C - C - C - C - C	quisite; 16 possible points)		J				-		_	_		U/L
	SS.P1	Joint Use of Facilities and Parks	Reg	REQ		T	Α	CD	ПТ	т	- 1		-
DESIGN	SS.C1	Sustainable Site Selection	1-5	5		Ť	Â	CD		_	- 1		-
ĕ	SS.C2	Central Location / Smart Growth	1	1		T	A			-	- 1		-
	SS.C3	Reduced Building Footprint	1	1		Ť	-	-		+	- 1		-
z	SS.C4	Building Layout & Microclimates	1	-		Ť	A	CD	T	+	- 1		CA
56	SS.C5	Public Transportation	1	1		Ť	A			-	- 1		-
DESIGN	SS.C6	Pedestrian/Bike/Human Powered Transportation	2		TBD by CCHS SBC	Ť	A	CD	T				CA
_	SS.C7	Parking Minimization	1		Parking configuration unknown at this stage of	Ť	-	CD	Ī	_	-		CA
z	SS.C8	Post-Construction Stormwater Management	1	1		T	A	CD	T	_	-		CA
<u>ত</u>	SS.C9	Reduce Heat Islands – Landscaping	1			Ť	-	CD	Ť	_	-		CA
DESIGN	SS.C10	Reduce Heat Islands – Cool Roofs	1	1		Ť	-	CD	1	_	-		CA
۵		Light Pollution Reduction	1	1		Ť	Ė.	CD	T T	_	. 1		CA
	00.011	Eight Foliation (Neddollon	- 1		minement minimization and the second		_	CD			- 1		UA

MA CHPS 2009

1		_	-	_						
			_							
		T	A	_	CD		T			CA
		T	-	. 0	CD		Т	Α		-
		-	-		-		-	-		-
		T		. 0	CD		T	-		CA
		Т	-	. (CD		Т	170		CA
		Т	-	. (CD		Т			CA
		Т	-	. (CD		Т	-		CA
		T	-	. (CD		т			CA
		Т	-	. (CD			1,70		CA
		Т	-	. (CD	ШЦ	т			CA
		Т	-	. (CD		Т	-	j. 1101	CA
100		Т	-	-	-			Α	H	-
		Т			-			Α		
		Т	١.		-		-	Α		
		т	A				120	100		-
		Ī	Á		- 1		-	A		-
		Т	Α		-		-	-		-
		Т	A		-		-	-		-
		Т	A		-		-	170		-50
		Т	A		-		-	170		
ng	9		_							
ng	9									
ıg	9									